microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN.

نویسندگان

  • Tommy A Karlsen
  • Rune B Jakobsen
  • Tarjei S Mikkelsen
  • Jan E Brinchmann
چکیده

Lesions of articular cartilage do not heal spontaneously. One treatment strategy would be to make cartilage in the laboratory by directed chondrogenic differentiation of mesenchymal stem cells (MSCs). To promote our understanding of the molecular control of chondrogenesis, we have compared the changes in microRNAs (miRNAs) during in vitro chondrogenesis of MSCs with those observed in uncultured and dedifferentiated articular chondrocytes (ACs). Several miRNAs showed a reciprocal relationship during the differentiation of MSCs and dedifferentiation of ACs. miR-140-5p and miR-140-3p changed the most during in vitro chondrogenesis, they were the miRNAs most highly expressed in tissue-engineered chondrocytes, and they were also among the miRNAs most highly expressed in uncultured ACs. There was a 57% overlap for the 100 most highly expressed miRNAs in differentiated MSCs and uncultured ACs, but for other miRNAs, the expression pattern was quite different. We transiently and stably inhibited and overexpressed miR-140-5p and miR-140-3p in differentiating MSCs and dedifferentiating ACs, respectively, to describe global effects and identify and validate new targets. Surprisingly, SOX9 and aggrecan proteins were found to be downregulated in anti-miR-140 transduced differentiating MSCs despite unchanged mRNA levels. This suggests that miR-140 stimulates in vitro chondrogenesis by the upregulation of these molecules at the protein level. RALA, a small GTPase, was identified as a miR-140 target and knockdown experiments showed that RALA regulated SOX9 at the protein level. These observations shed new light on the effect of miR-140 for chondrogenesis in vitro and in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

MicroRNA-145 Regulates Chondrogenic Differentiation of Mesenchymal Stem Cells by Targeting Sox9

Chondrogenic differentiation of mesenchymal stem cells (MSCs) is accurately regulated by essential transcription factors and signaling cascades. However, the precise mechanisms involved in this process still remain to be defined. MicroRNAs (miRNAs) regulate various biological processes by binding target mRNA to attenuate protein synthesis. To investigate the mechanisms for miRNAs-mediated regul...

متن کامل

Induced Chondrogenic Differentiation of hESCs by hESC-Derived MSCs Conditioned Medium and Sequential 3D-2D Culture System

Background and Aims: It has been proven that human mesenchymal stem cells (MSCs) conditioned medium (hMSCs-CM) can influence human embryonic stem cells (hESCs) chondrogenic differentiation. In this study, we hypothesized that conditioned medium (CM) from hESCs-derived MSCs in a sequential 3D-2D culture system could facilitate the induction of chondrogenesis in hESCs. Materials and Methods: CM ...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a.

BACKGROUND Chondrogenic differentiation of mesenchymal stem cells (MSCs) is important for osteoarthritis (OA) treatment. However, the specific mechanisms involved are undefined. MicroRNAs (miRNAs) downregulate protein synthesis by binding to the 3'UTR of target mRNA. METHODS Bone marrow aspirates were obtained from OA patients undergoing total hip arthroplasty (n=8) to isolate MSCs. MiR-410 o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stem cells and development

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2014